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Abstract

Mitochondrial composition varies by organ and their constituent cell types. This mitochondrial diversity likely
determines variations in mitochondrial function. However, the heterogeneity of mitochondria in the brain re-
mains underexplored despite the large diversity of cell types in neuronal tissue. Here, we used molecular sys-
tems biology tools to address whether mitochondrial composition varies by brain region and neuronal cell type
in mice. We reasoned that proteomics and transcriptomics of microdissected brain regions combined with
analysis of single-cell mRNA sequencing (scRNAseq) could reveal the extent of mitochondrial compositional
diversity. We selected nuclear encoded gene products forming complexes of fixed stoichiometry, such as the
respiratory chain complexes and the mitochondrial ribosome, as well as molecules likely to perform their func-
tion as monomers, such as the family of SLC25 transporters. We found that the proteome encompassing
these nuclear-encoded mitochondrial genes and obtained from microdissected brain tissue segregated the
hippocampus, striatum, and cortex from each other. Nuclear-encoded mitochondrial transcripts could only
segregate cell types and brain regions when the analysis was performed at the single-cell level. In fact, single-
cell mitochondrial transcriptomes were able to distinguish glutamatergic and distinct types of GABAergic neu-
rons from one another. Within these cell categories, unique SLC25A transporters were able to identify distinct
cell subpopulations. Our results demonstrate heterogeneous mitochondrial composition across brain regions
and cell types. We postulate that mitochondrial heterogeneity influences regional and cell type-specific mecha-
nisms in health and disease.
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Significance Statement

Mitochondria are important organelles for maintaining brain health. The composition of proteins making up
mitochondria is essential for their function. Disturbances to mitochondria are thought to contribute to neuro-
degeneration and neurodevelopmental disorders. These conditions typically affect specific brain regions or
cell types. Despite the link between mitochondria and diseases with distinct anatomic and cellular patterns,
how mitochondrial composition varies across brain regions and cell types remains poorly explored. Here,
we analyze mitochondrial composition in different brain regions and cell types in adult mice, showing com-
position differs by region and cell lineage. Our work provides a resource of genes enriched in certain cell
types or regions that improves our understanding of how mitochondrial composition influences brain func-
tion in health and disease.
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Introduction
The mitochondrion is classically depicted as the power-

house of the cell despite performing a variety of functions
outside of ATP production (Spinelli and Haigis, 2018). From
a purely bioenergetic perspective, some of these functions
are necessary for energy requirements to maintain plasma
membrane potential, synaptic activity, and actin cytoskele-
ton dynamics (Attwell and Laughlin, 2001; Bernstein and
Bamburg, 2003; Harris et al., 2012). However, additional
roles for mitochondria have been identified in behavior, syn-
aptic plasticity, neuronal migration, neurodevelopment, cal-
cium buffering, lipid metabolism, and cell death (Kann and
Kovács, 2007; Mattson et al., 2008; Mann et al., 2021). The
requirement of functional mitochondria for neuronal tissue is
perhaps best demonstrated by the family of mitochondrial
diseases, which share a high prevalence of neurologic
symptoms despite being otherwise clinically heterogeneous
(Chinnery, 1993; Vafai and Mootha, 2012; Gorman et al.,
2016).
Mitochondria are dynamic organelles and vary pheno-

typically by organ, cell type, and even within the cell
(Pagliarini et al., 2008; Aryaman et al., 2018; Fecher et al.,
2019; Rath et al., 2021). These differences in phenotypes
may emerge because of variation in mitochondrial com-
position across cell types and/or within a single cell. This
concept has been poorly considered and explored to
date, as most studies of mitochondrial biology involve
bulk purification of mitochondria from diverse organs
(Pagliarini et al., 2008; Fecher et al., 2019; Rath et al.,
2021). Cell type-specific differences in mitochondrial
composition could determine differential cellular sus-
ceptibility to neurodevelopmental disorders and neu-
rodegenerative diseases. Here, we address whether
mitochondrial composition varies across cell types
and brain regions. We take advantage of systems biol-
ogy gene expression analyses in microdissected brain
tissue and single-cell mRNA sequencing (mRNAseq)
datasets. We analyzed the transcriptome and proteome
in microdissected mouse cortex, hippocampus, and
striatum. We focused on the five respiratory chain com-
plexes and the mitochondrial ribosome, as necessary

components of mitochondria that have a fixed stoichi-
ometry (Vafai and Mootha, 2012), as well as the
SLC25A transporter family, as molecules of variable ex-
pression among tissues (Cunningham and Rutter, 2020;
Palmieri et al., 2020; Rath et al., 2021). Collectively, this
set of genes encompasses 18% of the mitochondria-
annotated proteome (Rath et al., 2021). Notably, while
the expression of this selected set of nuclear encoded
mitochondrial genes produced distinct regional clusters
differentiating the cortex, hippocampus, and striatum at
the proteome level, analysis of the transcript expression of
these nuclear encoded mitochondrial genes could not distin-
guish between these three different brain regions. However,
at the single-cell level, distinct cortical and hippocampal
regions could be distinguished by differential expression of
mitochondrial ribosome, SLC25A (inner mitochondrial mem-
brane transporters), or individual respiratory chain complex
transcripts. Expression of mitochondrial genes could promi-
nently distinguish excitatory and inhibitory neurons, as well as
different classes of GABAergic interneurons.
The present study demonstrates that nuclear encoded

mitochondrial transcripts and proteins are differentially
expressed across brain regions and cell types, informing
our understanding of the molecular diversity and hetero-
geneity within the brain. Our work expands recent findings
demonstrating that mitochondria differ in composition
among cell populations in the cerebellum (Fecher et al.,
2019) and between fast-spiking and regular spiking neu-
rons (Cserép et al., 2018). We postulate that cell lineage-
specific mitochondrial composition and metabolism are
poised to contribute to the susceptibility of certain cell
types to damage and/or cell death in diseases of the nerv-
ous system.

Materials and Methods
Animals and tissue dissection
Animal husbandry and euthanasia was conducted as ap-

proved by our Institutional Animal Care and Use Committees.
C57BL/6J male mice (The Jackson Laboratory #000664),
sixweeks of age, were euthanized with CO2 asphyxiation
and decapitated. Whole brain was removed, rinsed in
ice-cold phosphate buffered saline and placed in a pre-
chilled adult mouse coronal slicing matrix with 1.0-mm
slice interval (Zivic catalog #BSMAS001-1). Chilled
blades were placed in the matrix channels according to
manufactures recommendations and slices laid out on
an ice-cold aluminum block for punch microdissection.
Hippocampal regions were identified in sections #2 and
#3 of the slices corresponding to sections 21–22 of the
C57BL/6J Atlas (http://www.mbl.org/atlas170/atlas170_
frame.html). Cortex punches were taken adjacent to the
hippocampal regions. Striatum was dissected from slice
#6 or #7 corresponding to sections 15–16 of the C57BL/
6J Atlas. Punches of the brain tissue were taken using a
chilled punch set with 1.00-mm diameter punches
(Stoelting catalog #57401): six punches were taken from
each of the hippocampus, cortex, and striatum brain re-
gions (three from the left hemisphere and three from the
right hemisphere; Barr et al., 2004). Punches were
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ejected, transferred to a microcentrifuge tube using for-
ceps, and flash frozen in liquid nitrogen until processing
for RNAseq or mass spectrometry (MS).

RNAseq
RNA extraction, library construction, and sequencing

were done by BGI and are briefly described below. Total
RNA was extracted with TRIzol and quality control was
performed with the Agilent 2100 Bio analyzer (Agilent
RNA 6000 Nano kit) to do the total RNA sample QC: RNA
concentration, RIN value, 28S/18S, and the fragment
length distribution.
For library construction, poly-A containing mRNA mole-

cules were isolated using poly-T oligo-attached magnetic
beads. Following purification, the mRNA was fragmented
into small pieces using divalent cations under elevated
temperature. The cleaved RNA fragments were copied
into first strand cDNA using reverse transcriptase and ran-
dom primers. This was followed by second strand cDNA
synthesis using DNA Polymerase I and RNase H. cDNA
fragments underwent addition of a single “A” base and
subsequent ligation of the adapter. The products were
then purified and enriched with PCR amplification. We
quantified the PCR yield by Qubit and pooled samples to-
gether to make a single strand DNA circle (ssDNA circle),
which gave the final library. DNA nanoballs (DNBs) were
generated with the ssDNA circle by rolling circle replication
(RCR) to enlarge the fluorescent signals at the sequencing
process. The DNBs were loaded into the patterned nanoar-
rays and pair-end reads of 100bp were read through on
the BGISEQ-500 platform for data analysis. For this step,
the BGISEQ-500 platform combined the DNB-based nano-
arrays and stepwise sequencing using combinational
probe-anchor synthesis sequencing method. On average,
we generated ;5.64Gb bases per sample. The average
mapping ratio with reference genome was 93.47%, the av-
erage mapping ratio with gene was 67.04%; 19,972 genes
were identified in which 19,972 of them are known genes
and 2659 of them are novel genes; 29,781 novel transcripts
were identified.

Analysis of sequencing reads
The sequencing reads were uploaded to the Galaxy

web platform, and we used the public server at https://
usegalaxy.org/ to analyze the data (Afgan et al., 2018).
FastQC was performed to remove samples of poor quality
(Andrews, 2010). All mapping was performed using
Galaxy server (v. 21.01) running Hisat2 (Galaxy version
2.1.01galaxy7), FeatureCounts (Galaxy version 2.0.1),
and Deseq2 (Galaxy version 2.11.40.61galaxy1; Liao et
al., 2014; Love et al., 2014; Kim et al., 2015). The Genome
Reference Consortium build of the reference sequence
(GRCm38) and the GTF files (Ensembl) were used and
can be acquired from iGenome (Illumina). Hisat2 was
run with the following parameters: paired-end, un-
stranded, default settings were used except for a GTF
file was used for transcript assembly. The aligned SAM/
BAM files were processed using Featurecounts (Default
settings except used Ensembl GRCm38 GTF file and
output for DESeq2 and gene length file). FeatureCounts

output files and raw read files are publicly available
(GEO with accession GSE140054). The FeatureCounts
compiled file is GSE140054_AllTissueFeatureCounts.
txt.gz. Gene counts were normalized using DESeq2
(Love et al., 2014) followed by a regularized log trans-
formation. Differential Expression was determined
using DESeq2 with the following settings: factors were
tissue type, pairwise comparisons across tissues was
done, output all normalized tables, size estimation was
the standard median ratio, fit type was parametric,
outliers were filtered using a Cook’s distance cutoff.
We compared the top 100 genes whose expression

was different between cortex and hippocampus data from
our RNAseq study to the quantitative in situ hybridization
data from the mouse brain atlas at the Allen Institute.
Correlation analysis was performed with Prism 9 for
macOS version 9.1.1 (223), see Fig. 1.

MS
Sample processing
Each tissue piece was individually homogenized in

500ml of urea lysis buffer (8 M urea and 100 mM NaHPO4,
pH 8.5), including 5 ml (100� stock) HALT protease and
phosphatase inhibitor cocktail (Pierce). All homogeniza-
tion was performed using a Bullet Blender (Next Advance)
according to manufacturer protocols. Briefly, each tissue
piece was added to urea lysis buffer in a 1.5 ml Rino tube
(Next Advance) harboring 750-mg stainless steel beads
(0.9–2 mm in diameter) and blended twice for 5-min inter-
vals at 4°C. Protein supernatants were transferred to 1.5-
ml Eppendorf tubes and sonicated (Sonic Dismembrator,
Fisher Scientific) three times for 5 s with 15-s intervals of
rest at 30% amplitude to disrupt nucleic acids and subse-
quently vortexed. Protein concentration was determined
by the bicinchoninic acid (BCA) method, and samples
were frozen in aliquots at �80°C. Protein homogenates
(100 mg) were diluted with 50 mM NH4HCO3 to a final con-
centration of less than 2 M urea and then treated with 1
mM dithiothreitol (DTT) at 25°C for 30min, followed by 5
mM iodoacetimide (IAA) at 25°C for 30min in the dark.
Protein was digested with 1:100 (w/w) lysyl endopepti-
dase (Wako) at 25°C for 2 h and further digested overnight
with 1:50 (w/w) trypsin (Promega) at 25°C. Resulting pep-
tides were desalted with a Sep-Pak C18 column (Waters)
and dried under vacuum.

Tandemmass tag (TMT) labeling
For each tissue type, 10 individual samples and one

composite sample were labeled using the TMT 11-plex kit
(ThermoFisher 90406). Labeling was performed as previ-
ously described (Ping et al., 2018; Higginbotham et al.,
2020). Briefly, each sample containing 100 mg of peptides
was re-suspended in 100 mM TEAB buffer (100 ml). The
TMT labeling reagents were equilibrated to room temper-
ature, and anhydrous ACN (256ml) was added to each re-
agent channel. Each channel was gently vortexed for
5min, and then 41ml from each TMT channel was trans-
ferred to the peptide solutions and allowed to incubate for
1 h at room temperature. The reaction was quenched with
5% (v/v) hydroxylamine (8 ml; Pierce). All 10 channels were
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then combined and dried by SpeedVac (LabConco) to
;150ml and diluted with 1 ml of 0.1% (v/v) TFA, then
acidified to a final concentration of 1% (v/v) FA and 0.1%
(v/v) TFA. Peptides were desalted with a 200mg C18
Sep-Pak column (Waters). Each Sep-Pak column was ac-
tivated with 3 ml of methanol, washed with 3 ml of 50%
(v/v) ACN, and equilibrated with 2� 3 ml of 0.1% TFA.
The samples were then loaded and each column was
washed with 2� 3 ml 0.1% (v/v) TFA, followed by 2 ml of
1% (v/v) FA. Elution was performed with 2 volumes of 1.5
ml 50% (v/v) ACN. The eluates were then dried to
completeness.

High pH fractionation
High pH fractionation was performed essentially as de-

scribed with slight modification (Ping et al., 2020). Dried
samples were re-suspended in high pH loading buffer
(0.07% v/v NH4OH, 0.045% v/v FA, 2% v/v ACN) and
loaded onto an Agilent ZORBAX 300 Extend-C18 column
(2.1� 150 mmwith 3.5-mm beads). An Agilent 1100 HPLC
system was used to carry out the fractionation. Solvent A
consisted of 0.0175% (v/v) NH4OH, 0.0125% (v/v) FA,
and 2% (v/v) ACN; solvent B consisted of 0.0175% (v/v)
NH4OH, 0.0125% (v/v) FA, and 90% (v/v) ACN. The sam-
ple elution was performed over a 58.6-min gradient with a
flow rate of 0.4 ml/min. The gradient consisted of 100% sol-
vent A for 2min, then 0–12% solvent B over 6min, then 12–
40% over 28min, then 40–44% over 4min, then 44–60%
over 5min, and then held constant at 60% solvent B for
13.6min. A total of 96 individual equal volume fractions were
collected across the gradient and subsequently pooled by
concatenation into 24 fractions and dried to completeness
using a vacuum centrifugation.

Liquid chromatography tandemMS
Each of the 24 high-pH peptide fractions was resus-

pended in loading buffer (0.1% FA, 0.03% TFA, 1% ACN).
Peptide eluents were separated on a self-packed C18
(1.9mm Maisch) fused silica column [25 cm� 75 mM inter-
nal diameter (ID), New Objective] by an Easy nLC 1200
(Thermo Scientific) and monitored on an Q-Exactive HFX
MS (Thermo Scientific). Elution was performed over a 120
min gradient at a rate of 300 nl/min with buffer B ranging
from 3% to 40% (buffer A: 0.1% FA in water; buffer B:
0.1% FA in 80% ACN). The mass spectrometer was set to
acquire data in positive ion mode using data-dependent
acquisition with top 10 cycles. Each cycle consisted of
one full MS scan followed by a maximum of 10 MS/MS.
Full MS scans were collected at a resolution of 120,000
(400–1600 m/z range, 3� 10^6 AGC, 100ms maximum
ion injection time). All higher energy collision-induced dis-
sociation (HCD) MS/MS spectra were acquired at a reso-
lution of 45,000 (1.6 m/z isolation width, 30% collision
energy, 1� 10–5 AGC target, 86-ms maximum ion time).
Dynamic exclusion was set to exclude previously sequenced
peaks for 20 s within a 10-ppm isolation window.

Data processing protocol
All raw files were searched using Thermo’s Proteome

Discoverer suite (version 2.1.1.21) with Sequest HT. The
spectra were searched against a mouse Uniprot database

downloaded July, 2018 (98,225 target sequences). Search
parameters included 20-ppm precursor mass window,
0.05-Da product mass window, dynamic modifications
methione (115.995 Da), deamidated asparagine and
glutamine (10.984 Da), phosphorylated serine, threo-
nine and tyrosine (179.966 Da), and static modifica-
tions for carbamidomethyl cysteines (157.021 Da) and
N-terminal and lysine-tagged TMT (1229.26340 Da).
Percolator was used filter PSMs to 0.1%. Peptides
were grouped using strict parsimony and only razor
and unique peptides were used for protein level quan-
titation. Reporter ions were quantified from MS2 scans
using an integration tolerance of 20ppm with the most confi-
dent centroid setting. Only unique and razor (i.e., parsimoni-
ous) peptides were considered for quantification.
The MS proteomics data have been deposited to the

ProteomeXchange Consortium via the PRIDE (Perez-
Riverol et al., 2019) partner repository with the dataset
identifier PXD026104.
Correlations and statistical analysis between the fold of

change expression slopes of the selected 210 nuclear en-
coded mitochondrial transcripts presented in Figure 2G
was performed with Prism 9 for macOS version 9.1.1
(223).

Single-cell RNAseq
Single-cell RNAseq data are described in (Yao et al.,

2020). Gene expression data matrix (matrix.csv) and cell
metadata (metadata.csv). Whole cortex and hippocam-
pus-smart-seq (2019) with 10�-smart-seq taxonomy
(2020) data were downloaded from the Allen Institute
Portal. This dataset contains RNAseq data of single cells
isolated from .20 areas of mouse cortex and hippocam-
pus. Abbreviations used in figures match the Allen Mouse
Brain Atlas. The data set includes 76,307 single cells. The
sequencing results were aligned to exons and introns in
the GRCm38.p3 reference genome using the STAR algo-
rithm, and aggregated intron and exon counts at the gene
level were calculated.
Matrix files were processed with Delimit Pro for

Windows 10/8.1/7. We selected the 210 nuclear en-
coded transcripts from the matrix.csv file with Delimit
Pro and data were assembled in Excel together with
the metadata.csv data. Data were exported as tab de-
limited text file and analyzed with the Qlucore Omics
Explorer version 3.6(33). Data were log2 converted
and normalized to a mean of 0 and a variance of 1. 2D
t-distributed stochastic neighbor embedding (t-SNE) plots
were generated using a perplexity of 10 and default settings.
Callouts were made by cell metadata or gene expression lev-
els. Respiratory complexes and mitochondrial ribosome sub-
units were defined using the CORUM database, see text for
complex entries (Giurgiu et al., 2019).

Results
Brain expression of mitochondrial proteins reveals
regional heterogeneity
Expression levels of proteins and their transcripts have

been used to explore tissue heterogeneities in organelle
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abundance and/or composition (Andersen and Mann,
2006; Geiger et al., 2013; Wilhelm et al., 2014; Cardoso-
Moreira et al., 2019; He et al., 2020). We applied this para-
digm to mitochondria from adult mouse brain regions. We
performed simultaneous quantifications of the transcrip-
tome and proteome from punch-microdissected mouse
coronal sections of cortex, hippocampus, and the stria-
tum. We chose punch-microdissected tissue to minimize
noise introduced by tissue heterogeneity. Microdissection
resulted in tissue samples of ;160 mm3 for microanalyti-
cal omics analyses. We focused on components of the
five electron transport chain complexes, the mitochondrial
ribosome, and the SLC25A family of inner mitochondrial
membrane transporters. We selected the five respiratory
chain complexes and the mitochondrial ribosome, as these
complexes are necessary components of mitochondria
and have defined subunit stoichiometries necessary for
their function (Vafai and Mootha, 2012). In contrast, the ex-
pression of SLC25A transporter family members is variable
among tissues, as only the phosphate carrier (SLC25A3)
and ADP/ATP carriers (SLC25A4-6) are essential for ATP
synthesis (Cunningham and Rutter, 2020; Palmieri et al.,
2020; Rath et al., 2021). Collectively, this set of genes con-
stituted 210 proteins, or 18% of the mitochondria-anno-
tated proteome (Rath et al., 2021). We reasoned that
respiratory chain complex subunits and the mitochondrial
ribosome should be refractory to anatomic expression dif-
ferences because of their fixed stoichiometries, while the
SLC25A family of transporters would be likely to reveal het-
erogeneous expression across brain regions.
We quantified mRNA expression across three distinct

mouse brain regions encompassing diverse cell types:
cortex, hippocampus, and striatum (Fig. 1). We focused
first on all mRNAs encoded in the mouse genome (Fig.
1A1), and then on a subset of 210 of these messages en-
coding proteins localized to mitochondria (Fig. 1A2). We
considered an expression change significant if gene ex-
pression between two regions differed by at least 2-fold
with p,0.001. These same thresholds were applied to
RNAseq and proteome datasets from mouse tissues
(Figs. 1-3).
Brain regions were discriminated by their whole-ge-

nome transcript expression (Fig. 1A1). For example, cor-
tex and hippocampus differed by 353 genes whose
relative expression was higher in cortex and 316 genes
whose relative expression was higher in hippocampus
(Fig. 1A1). We validated these gene expression differen-
ces with the Allen Mouse Expression Atlas and observed
a strong correlation between both datasets (r=0.69,
p, 0.0001; Fig. 1B). In contrast with the transcriptomes
of whole brain regions, the 210 mRNAs mapping to the
selected subset of nuclear encoded mitochondrial pro-
teins have minimal expression differences among the
three brain regions (Fig. 1A2). We could only distinguish
the striatum from other regions because of its low expres-
sion of the transporters SLC25A13, SLC25A34, and
SLC25A37 (Fig. 1A2). These transporters encode an as-
partate-glutamate exchanger, an orphan transporter, and
an iron uptake transporter, respectively (Palmieri and
Monné, 2016). While global gene expression patterns

segregated cortex and other brain regions into defined
clusters by t-SNE (Fig. 1C; Kobak and Berens, 2019),
the 210 selected mitochondrial transcripts poorly dis-
tinguished brain regions using t-SNE analysis (Fig.
1D). This indicated minimal regional differences in the
bulk expression of messages encoding proteins local-
ized to mitochondria.
The poor discrimination between brain regions by the

210 mRNAs encoding our selected subset of mitochon-
drial proteins could be interpreted in the following ways.
Anatomical differences in cellular composition could
skew regional differences dictated by these mRNAs. For
instance, increased numbers of mitochondria in certain
cell types may mask any differences that would otherwise
be detectable when analyzing single cells. Additionally,
regional differences could be manifested at the protein
rather than at the transcript level. This last problem is a
common occurrence in diverse tissues and cell types, in-
cluding the brain, with correlations between mRNA and
protein expression below 0.5 (de Sousa Abreu et al.,
2009; Ghazalpour et al., 2011; Schwanhäusser et al.,
2011; Carlyle et al., 2017; Wang et al., 2019). We ad-
dressed these questions by quantifying regional pro-
teomes in mouse brain (Fig. 2) and by analyzing the
expression of these 210 mitochondrial transcripts at a sin-
gle-cell level (Figs. 3-5). We used quantitative isobaric la-
beling by TMT of adult mouse brain proteomes to
measure regional proteome differences (Fig. 2; Werner et
al., 2012; Gokhale et al., 2019, 2021). We selected TMT
MS quantification of the proteome because TMT offers
improved capacity to detect changes reaching statistical
significance. This is because of TMT’s superior precision
and reduced number of missing values as compared with
label-free quantifications (O’Connell et al., 2018).
We first determined the quality of our 15-plex TMT brain

proteome across the three brain regions selected, analyz-
ing correlation coefficients between biological replicates
within and in between brain regions (Fig. 2). Multiscatter
plots and correlation matrices showed Pearson correla-
tions .0.9 among biological replicates within a brain re-
gion and above 0.5 in comparisons between regions (Fig.
2A). These strong correlations manifested as a reduced
variance by principal component analysis (PCA) where
97% of the total variance was accounted by principal
component 1 (Fig. 2A, inset). Biological replicates within
regions clustered closely and were segregated from other
brain regions by PCA, thus validating our TMT proteome
dataset (Fig. 2A, inset).
The global proteome unveiled vast differences between

mouse brain regions (Fig. 2B). These proteome differen-
ces were more pronounced than those found at the tran-
script level. As an example, the cortex and hippocampus
differed in the expression levels of 4698 proteins among a
total of 5285 proteins quantified by TMT, while these two
regions differed significantly in only 670 mRNAs (compare
Figs. 1A1 and 2B). We further validated our findings and
datasets by comparing our proteome hits against the
label-free quantified proteomes by Sharma et al. (2015).
Our mouse cortex-enriched proteome captured 69.2% of
the mouse motor cortex-enriched proteome described by
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Sharma et al. (2015). This overlap is 30.8 times above
what it is expected by chance (p=7.9E-195; Fig. 2B, Venn
diagram insets). We also found significant, yet less pro-
nounced, overlaps between the hippocampal-enriched
and striatum-enriched hits and those previously reported
(Sharma et al., 2015). Thus, our results capture previously
reported differences in the regional brain proteomes and
significantly expand them by deploying TMT MS as a way
to quantify the proteome.
Among proteins whose expression differed across

brain regions, we found multiple mitochondrial proteins
(Fig. 2C,D). The most significant changes in mitochondrial
protein expression included proteins belonging to respira-
tory chain complexes, the mitochondrial ribosome, and
the SLC25A family of transporters (Fig. 2C,D). The highest

expression levels of some of these mitochondrial proteins
were observed in the cortex (Fig. 2C). We used a nonlinear
tool of data dimensionality reduction, t-SNE, to uncover
similarities in the local and global structure of the protein
expression data (Fig. 2E,F; Kobak and Berens, 2019). t-
SNE analysis of the whole proteome showed that the
three brain regions studied did not group into clearly de-
fined clusters (Fig. 2E). However, when t-SNE analysis
was performed with the selected mitochondrial proteins,
cortex, hippocampus, and striatum were group into
clearly distinct cluster (Fig. 2F). Thus, t-SNE analysis indi-
cates that expression differences in mitochondrial pro-
teins alone can anatomically discriminate these datasets.
To further explore the regional differences we observed in

mitochondrial protein expression, we performed correlation

Figure 1. RNAseq analysis of microdissected mouse brain regions. A1, A2, Volcano plots of cortex compared with hippocampus,
cortex compared with striatum, and hippocampus compared with striatum from adult male mice (n=5). Threshold for significance
was set at p, 10�3 and log2 fold change at 1. Color code symbols depict the fold of change below or above the thresholds. A1, All
transcripts quantified using DSeq2 annotated to the mouse genome GRCm38. A2, All nuclear transcripts encoding subunits of the
respiratory chain complexes, the mitochondrial ribosome, and the SLC25A family of transporters. Note that scarce numbers of
these nuclear encoded mitochondrial transcripts show modest expression differences among brain regions. B, Validation of the
RNAseq results using as a comparison the in situ hybridization data from the Allen Mouse Brain Atlas. The 100 most upregulated
and downregulated genes when comparing cortex and hippocampus by RNAseq were correlated with the differences reported by
the Allen data. C, t-SNE analysis of the RNAseq data presented in A1. D, t-SNE analysis of the data presented in A2.
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analysis of these differences across paired brain regions (Fig.
2G), focusing on the selected mitochondrial proteins of inter-
est. We reasoned that anatomically universal mitochondrial
expression patterns would be represented by similar expres-
sion differences across multiple mitochondrial proteins be-
tween two regions. Similar slopes among regional pairwise
comparisons would indicate homogenous expression differ-
ences, while differences in slope would suggest regional
composition differences. These compositional distinctions
could originate either from differences in mitochondria shared
by all cells in a defined anatomic location or differences in mi-
tochondrial composition among diverse cell types residing in
a defined anatomic region (Fig. 2G). We found that pairwise
expression difference correlations showed different ordinate
intersects (Fig. 2G). The slope of these correlations was sig-
nificantly distinct among regional pairwise comparisons (Fig.

2G). Moreover, subunits of respiratory chain complexes and
the mitochondrial ribosome were similarly weighted to the
parameters of these correlations (Fig. 2G, orange and blue
symbols, respectively). These data argue for regional hetero-
geneity in the expression of mitochondrial constituents, even
among respiratory chain complexes and the mitochondrial
ribosome.

Single-cell transcriptomes identify anatomic and cell
type-specific differences in nuclear encoded
mitochondrial genes
The proteomics data suggested that regional heteroge-

neities in mitochondrial protein expression in adult mouse
brain could originate from intrinsic differences in the cellu-
lar expression of nuclear encoded mitochondrial genes.

Figure 2. TMT proteomic analysis of microdissected mouse brain regions. A, Multiscatter plots with all individual biological replicates used
for TMT quantifications. Insets, Pearson similarity coefficients and PCA of samples in multiscatter plots. B, C, Volcano plots of cortex com-
pared with hippocampus, cortex compared with striatum, and hippocampus compared with striatum from adult male mice (n=5).
Threshold for significance were set at p, 10�3 and log2 fold change at 1. Color code symbols depict the fold of change below or above
the thresholds. B, All proteins quantified in brain samples with inset Venn diagrams depicting the overlap between our TMT data (blue) and
label-free quantifications by Sharma et al. (2015; pink). Representation factor and p values were estimated with an exact hypergeometric
probability test. C, All nuclear encoded subunits of the respiratory chain complexes, the mitochondrial ribosome, and the SLC25A family of
transporters. Note the abundant nuclear encoded mitochondrial proteins differentiating brain regions. D, Heat maps of the proteins that
show the most pronounced changes based on the q value and magnitude of the difference. E, t-SNE analysis of the proteome data pre-
sented in B. F, t-SNE analysis of the data presented in C. Note that the best clustering of brain regions is obtained with the nuclear encoded
mitochondrial proteins described in C. G, Simple linear correlation analysis of expression differences across brain regions. Proteins belong-
ing to respiratory chain complexes, the mitochondrial ribosome, and the SLC25A family of transporters are color coded. Note the differen-
ces in slopes. p values describe the differences between adjacent correlation plots slopes obtained with Prism. Shaded area represents the
95% confidence interval. See Extended Data Figure 2-1 for list of protein hits with p, 10�3 and log2 fold change of least 1.
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To test this hypothesis, we analyzed the expression of
the 210 nuclear encoded mitochondrial transcripts at
the single-cell level. We reasoned the ineffectiveness
of bulk tissue RNAseq discriminating brain regions

solely on nuclear encoded mitochondrial transcripts
(Fig. 1) could be bypassed by the richness of fine-
grained categorizational information from single-cell
RNAseq datasets. We selected the Allen single-cell

Figure 3. Nuclear encoded mitochondrial transcripts differentiate neurons by neurotransmitter identity and anatomical location. A,
Volcano plots were assembled using the Allen single-cell RNAseq dataset. A total of 50,002 pyramidal glutamatergic neurons were
compared with 22,745 GABAergic interneurons. Volcano plots are organized by subunits belonging to the mitochondrial ribosome,
electron chain complexes I to V, and the SLC25A family of solute transporters. The mitochondrial ribosome and the SLC25A family
of transporters are the most dissimilarly expressed transcripts when comparing GABAergic with glutamatergic neurons. B1, t-SNE
cell atlas generated with the expression levels of all transcripts encoding mitochondrial ribosome subunits. The t-SNE atlas encom-
passes .20 areas of mouse cortex and hippocampus, totaling 76,307 cells. Color codes denote brain regions annotated by the
Allen Brain Atlas. B2 shows B1 data after 100 consecutive permutations. Anatomical segregation is lost. C, Diagram explaining strat-
egy for cell type and anatomic callout in t-SNE atlases. GABAergic neurons were color-coded green and glutamatergic neurons
were color coded gray. Cell type and anatomic region were marked by a triangle. D, t-SNE atlas shown in B1 that was layered with
the neurotransmitter identity of cells and anatomic location of cells (triangles). GABA, parvalbumin (Pval), somatostatin (Sst), g-syn-
uclein (Sncg), vasointestinal peptide (Vip), and lysosomal-associated membrane protein family member 5 (Lamp5) denote markers
defining specific interneuron subpopulations. E, t-SNE atlas shown in B1 but layered with the subtype of interneuron (triangles).
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transcript expression dataset as the most comprehen-
sive single-cell transcript expression study to date
(Yao et al., 2020). The Allen brain dataset encom-
passes .20 areas of mouse cortex and hippocampus,
totaling 76,307 cells. Of these cells, 50,002 corre-
spond to pyramidal glutamatergic neurons and 22,745
correspond to GABAergic interneurons, which include
4363 parvalbumin (PV)-positive cells (Yao et al., 2020).
We asked whether the mRNA expression of any one

of the five electron transport chain complexes, the mi-
tochondrial ribosome, or the SLC25A family of inner
mitochondrial membrane transporters was able to dis-
criminate anatomic regions and brain cell types in t-
SNE-generated atlases (Figs. 3-5). We first sought to
determine whether the expression of transcripts could
be different between glutamatergic and GABAergic
neurons when single-cell expression was bulk aver-
aged across each cell category. Volcano plots re-
vealed that the most pronounced changes in the
number of transcripts and the magnitude of expression
differences occurred among subunits of the mitochon-
drial ribosome and the SLC25A family of mitochondrial
transporters (Fig. 3A). Some transcripts were enriched in
glutamatergic neurons, such as the mitochondrial ribosome
subunit Lactb (Mrpl56) or the mitochondrial glutamate/pro-
ton symporter SLC25A22 (Fig. 3A). Conversely, the mito-
chondrial ribosome subunit Mrpl52 and the mitochondrial
aspartate-glutamate carrier SLC25A13 were enriched in
GABAergic neurons (Fig. 3A). The bulk expression of at least
one respiratory complex subunit or its assembly factor was
substantially different between these two neuron types (Fig.
3A; see Ndufaf5, Sdhc, and Atp5J).
We used t-SNE to compress multidimensional mRNA

expression data into single point cell representations.
t-SNE atlases capture and represent similarities in sin-
gle-cell gene expression by clustering cells along the co-
ordinates of a bidimensional space (Fig. 3B; Kobak and
Berens, 2019). These atlases were then annotated based
on their anatomic location or cell type, using triangles to
label cells belonging to a particular region (Fig. 3C–E).
We focused on GABAergic (Fig. 3C–E, green dots) and
glutamatergic neurons (Fig. 3C–E, gray dots), as these
two cell types were the most numerous cells whose gene
expression was scored in the Allen dataset (Yao et al.,
2020).
We next focused our analysis on the mitochondrial ribo-

some, as this organelle is the biggest protein complex in
mitochondria. The ribosome is encoded by ;80 core nu-
clear expressed proteins necessary for organelle function
(CORUM complex #320; Giurgiu et al., 2019). We built a
mitochondrial ribosome subunit expression t-SNE atlas
(Fig. 3B1). This atlas revealed that mitochondrial ribosome
mRNA expression profiles grouped cells into distinct
areas of the cortex and hippocampus (the hippocampus
is annotated by color in Fig. 3B1 and by a triangle callout in
Fig. 3D), as well as neuronal cell types within these regions
(Fig. 3D, anatomic annotation by triangle callout over a
color-coded glutamate vs GABA-annotated atlas). These
anatomic distinctions were removed after data permutation,
supporting specific anatomic patterns of mitochondrial

ribosome gene expression across the brain (Fig. 3B2). t-
SNE analysis of mitochondrial ribosome gene expression
segregated cells into two major clusters; one was enriched
in cells from the temporal cortex, visual cortex, and hippo-
campus, while the other cluster preferentially enriched cells
from motor cortex areas (Fig. 3D, anatomic annotation by
triangle callout over a color-coded glutamate vs GABA-an-
notated atlas). We mapped the neurotransmitter identity of
different cell types into this mitochondrial ribosome gene ex-
pression atlas to assess cell type-specific variations in gene
expression (Fig. 3E, GABAergic neuronal subtype annota-
tion by triangle callout over a color-coded glutamate vs
GABA-annotated atlas). t-SNE analysis revealed clear dis-
tinctions between GABAergic and glutamatergic cells (Fig.
3E, green and gray symbols, respectively). In particular, PV-
positive and g-synuclein (Sncg)-positive interneurons were
the most clearly segregated cell types, regardless of their
anatomic location (compare triangle callouts in Fig. 3D,E).
Cell clustering was less pronounced for somatostatin-posi-
tive or vasointestinal peptide-positive interneurons (Fig. 3E).
We overlapped the t-SNE transcriptional clusters with heat
maps depicting expression levels of representative mito-
chondrial ribosome transcripts (Fig. 5). These heat maps
indicated that the expression of several mitochondrial ribo-
some transcripts was higher in GABAergic interneurons, in
particular PV-positive interneurons localized to motor areas
of the cortex (compare Figs. 3D,E and 5A).
We wanted to evaluate the robustness of nuclear en-

coded mitochondrial gene expression sets to segregate
cell populations into anatomic and cell type categories
(Fig. 4). To this end, we built additional gene expression
atlases with transcript datasets made up of either the 48
SLC25A transporters, 45 subunits of Complex I, four sub-
units of Complex II (CORUM complex #440), 10 subunits
of Complex III (CORUM complex #403), 14 subunits of
Complex IV (CORUM complex #6442), or 16 subunits of
Complex V (CORUM complex #563; Giurgiu et al., 2019).
Each one of these atlases segregated cells into distinct
anatomic and cell type-specific cell populations (compare
Fig. 4A, where anatomic annotation is done by color, and
B, where the GABAergic cell type annotation is done with
triangle callouts). Of note, the distance to nearest neigh-
bors for the SLC25A family was more variable, containing
small distinct clusters, compared with the ribosome and
electron transport chain complexes. Transcriptionally de-
fined cell populations were identified regardless of the
complexity of the dataset fed into the t-SNE algorithm.
For example, t-SNE analysis of Complex II, a complex
represented just by four transcripts, segregated cells into
clusters categorized by anatomic location and cell type
(Fig. 4A,B). The expression of Complex II subunits was
sufficient to distinguish PV-positive GABAergic neu-
rons among all cell types, regardless of their anatomic
location (Fig. 4A,B). Similar findings were obtained
with cell atlases generated with each one of the respi-
ratory chain complexes, as well as the SLC25A trans-
porter family (Fig. 4A,B).
We also determined whether the expression levels of

different transcripts could further distinguish transcrip-
tionally defined cell populations. We superimposed
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expression heat maps of mitochondrial ribosome subu-
nits, transporters of the SLC25A family, and subunits of
Complex I into their corresponding atlases. Subunits of
the mitochondrial ribosome expressed similarly and pre-
ponderantly in GABAergic neurons (compare Figs. 5A and
3E); however, members of the SLC25A transporter family
displayed variable transcript expression patterns (Fig.
5B). On one hand, we found SLC25A transporters
whose expression was higher in classes of GABAergic
neurons (compare Figs. 5B1 and 4A). These include
the phosphate transporter SLC25A3 and the ADP-ATP
mitochondrial translocators SLC25A4 and SLC25A5.
These three SLC25A transporters are indispensable in
mitochondria for ATP generation (Palmieri and Monné,
2016; Cunningham and Rutter, 2020). On the other
hand, we identified transporters whose expression
was 2-fold to 4-fold higher in discrete cell populations.
For example, SLC25A13 was expressed at high levels
in a unique subgroup of cells among PV-positive cells
(compare Fig. 5B1 and 4A). This cell population is

missed in the expression analysis of this transporter
when glutamatergic and GABAergic neuron SLC25A13
mRNA levels were averaged in bulk (Fig. 3A, volcano
plots). Similarly, the most expressed transporters in
glutamatergic cells by bulk averaging were SLC25A22,
SLC25A37, and SLC25A42 (Fig. 3A). Yet, when we
mapped the expression levels of these transporters to
a t-SNE atlas, we found again discrete cell populations
with uniquely high expression levels of these three
transporters (Fig. 5B2).
We expanded our studies to the expression of a subset of

SLC25A transporters annotated in the SFARI database that
are associated with autism spectrum disorder (SLC25A12,
SLC25A27, and SLC25A39; Abrahams et al., 2013), or
whose expression is altered in postmortem autism brain sam-
ples (SLC25A12, SLC25A14, and SLC25A27; Fig. 5B3;
Segurado et al., 2005; Lepagnol-Bestel et al., 2008; Anitha et
al., 2012). We found that these transporters had non-overlap-
ping increases in expression levels in discrete brain areas and
cell types (compare Figs. 5B3 and 4A). Interestingly, while

Figure 4. Families of nuclear encoded mitochondrial transcripts differentiate neurons by neurotransmitter identity and anatomical lo-
cation. A, B, t-SNE cell atlases were generated with the expression levels of nuclear transcripts either encoding subunits of the re-
spiratory chain complexes I to V, the mitochondrial ribosome, or the SLC25A family of transporters. A, t-SNE atlases encompasses
.20 areas of mouse cortex and hippocampus, totaling 76,307 cells in each case. Color codes denote brain regions annotated by
the Allen Brain Atlas. B, GABAergic neurons color-coded green and glutamatergic neurons color coded gray. PV-positive and so-
matostatin-positive cells were marked by a triangle. Note that families of transcripts can segregate cells by their lineage and ana-
tomic origin.
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SLC25A12 and SLC25A13 are both aspartate-glutamate car-
rier isoforms, only SLC25A12 is linked to autism (Figs. 4, 5B3;
Segurado et al., 2005; Lepagnol-Bestel et al., 2008; Palmieri
and Monné, 2016; Cunningham and Rutter, 2020). The ex-
pression properties uncovered with t-SNE atlases built with
mitochondrial ribosome or SLC25A transporter datasets
were also evident with a Complex I subunit dataset (Fig. 5C).
We found discrete cell clusters that differed markedly in the
expression levels of some of the Complex I subunits (Fig. 5C,
compare Ndufa1 and Ndufa6). Our findings demonstrate that
PV-positive neurons and glutamatergic neurons can be differ-
entiated based on the abundance and expression patterns of
nuclear encoded mitochondrial genes. We conclude that the
expression of nuclear encoded mitochondrial genes varies
across anatomic locations and cell types in the brain. These
findings set the stage for the possibility of diversified mito-
chondrial composition and function across cell types and re-
gions in neural tissue.

Discussion
We used proteomic and single-cell transcriptomic data-

sets to discern whether expression of nuclear mitochon-
drial genes can differentiate both anatomic regions and
neuronal cell types in the adult mouse brain. We focused
on a subset of nuclear mitochondrial genes encompass-
ing the electron transport chain, mitochondrial ribosome,
and SLC25A family of mitochondrial transporters. Using
whole tissue datasets from the cortex, hippocampus,
and striatum, we found that regional mitochondrial dif-
ferences were apparent at the protein level but not the
transcript level (Figs. 1, 2). We reasoned that this pro-
teomic variation could stem from intrinsic regional dif-
ferences in mitochondrial composition and/or cell type-
specific mitochondrial composition, given the variable

makeup of cell types in the different regions (Wheeler et
al., 2015; Zeisel et al., 2015; Gokce et al., 2016; Tasic et
al., 2016, 2018; Erö et al., 2018). We used t-SNE analy-
sis of a comprehensive, neuronally-enriched single-cell
RNAseq dataset to gain more insight into these possi-
bilities (Yao et al., 2020). We found that differences in
nuclear encoded mitochondrial transcript expression at
the single-cell level distinguished cortical areas and re-
gions of the hippocampal formation from one another
(Figs. 2-4), and the expression of some nuclear en-
coded mitochondrial genes was differentially enriched
in distinct cell populations in single-cell RNAseq analy-
sis (Fig. 5). In particular, our results showed that excita-
tory and GABAergic neurons can be differentiated
based solely on their expression of nuclear encoded mi-
tochondrial transcripts (Fig. 3).
Our findings expand recent evidence that there is heter-

ogeneity in mitochondrial composition among different
brain cell types (Fecher et al., 2019). Fecher and col-
leagues used an elegant genetic approach to tag and iso-
late brain mitochondria in a cell type-specific manner,
demonstrating that GABAergic Purkinje cells, glutamater-
gic granule cells, and astrocytes in the cerebellum have
distinct proteomes that help carry out specialized func-
tions in these cell types (Voogd and Glickstein, 1998;
Ioannou et al., 2019). Here, we extend this evidence of
heterogeneity by analyzing single-cell transcript data from
a large number of neurons across diverse cortical and hip-
pocampal areas. The breadth and granularity of our analy-
sis extends the principle that brain mitochondria are
heterogeneous organelles across diverse brain regions.
We focused on electron transport chain genes, mitochon-
drial ribosome genes, and the SLC25A transporter family,
reasoning that the defined stoichiometry of electron trans-
port chain and ribosomal complexes would preclude

Figure 5. Differential expression of selected nuclear encoded mitochondrial transcripts further differentiates neuronal subpopula-
tions. A–C, t-SNE cell atlases built with the subunits of the mitochondrial ribosome (A), the SLC25A family of transporters (B), and
the electron transport chain Complex I (C). t-SNE cell atlases were overlaid with heat maps of the expression levels of selected sub-
units of protein complexes or transporters. B1, Transporters diffusely expressed across brain regions or showing specific patterns
of expression. B2, Transporters Slc25a22, Slc25a37, and Slc25a42 preferentially expressed in glutamatergic cells (see Fig. 3A). B3,
SLC25A transporters annotated in the SFARI database associated with autism spectrum disorder (SLC25A12, SLC25A27, and
SLC25A39) or whose expression is altered in postmortem autism brain samples (SLC25A12, SLC25A14, and SLC25A27).
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them from having much heterogeneity while the SLC25A
family, most of which are dispensable for ATP genera-
tion, would have more variable expression. Our proteo-
mics data showed that, surprisingly, regional differences
in mitochondrial composition extend to electron trans-
port chain subunits and mitochondrial ribosome subu-
nits (Fig. 2). Several mitochondrial ribosome proteins
and respiratory complex proteins are enriched in the cor-
tex compared with the hippocampus or striatum (Fig. 2).
Moreover, t-SNE analysis of the single-cell RNAseq pro-
file of mitochondrial ribosome transcript expression,
SLC25A transcript expression, or expression of genes of
the individual respiratory complexes segregates differ-
ent cortical and hippocampal regions from one another
(Figs. 3, 4). Generally, mitochondrial ribosome gene ex-
pression was enriched in GABAergic cell types, particu-
larly fast-spiking PV-positive interneurons (compare
Figs. 3E and 5A). This is perhaps not surprising given the
role of the mitochondrial ribosome in translating mito-
chondrially encoded subunits of the electron transport
chain. However, while it has been established that the
mitochondrial ribosome is required for neuronal devel-
opment and function (Gokhale et al., 2021), there is no
evidence for GABAergic-specific requirements of mito-
chondrial ribosomes.
The single-cell transcriptomes of glutamatergic and

GABAergic neurons, as well as different classes of
GABAergic neurons, distinguish these neuronal types
from one another (Fig. 3). These differences in presumed
mitochondrial composition may underlie unique mito-
chondrial demands imposed by specialized cell types,
as has been suggested by previous work (Murgia et al.,
2015; Cserép et al., 2018; Fecher et al., 2019; Thomas et
al., 2019). For instance, the faster spiking characteristic
of PV-positive GABAergic interneurons imposes greater
energy demands for these cells, and their mitochondria
are ultrastructurally adapted to generate ATP very effi-
ciently (Cserép et al., 2018). Moreover, the integrity of
electron transport chain subunits is crucial for PV inter-
neuron function (Inan et al., 2016; Sanz-Morello et al.,
2020). Our data suggest that the mitochondrial ribosome
and members of the SLC25A family also play key roles in
PV interneuron function, as the expression of mitochon-
drial ribosome subunits and certain SLC25A transporters
(SLC25A3-5, SLC25A13) is enriched in PV interneurons
(compare Figs. 3E, 4, 5). GABAergic signaling by PV in-
terneurons is key in establishing the ratio of excitatory to
inhibitory (E-I) neurotransmission in the cortex (Ferguson
and Gao, 2018). Disruptions to the E-I ratio have been
widely hypothesized to contribute to pathogenesis of neuro-
developmental and psychiatric disorders (Nelson and
Valakh, 2015; Sohal and Rubenstein, 2019). Perturbations
of the E-I ratio in rodents impair circuit function and informa-
tion processing capabilities of cortical neurons, producing
behavioral defects common in neurodevelopmental and
psychiatric disease (Yizhar et al., 2011; Nelson and Valakh,
2015; Antoine et al., 2019; Sohal and Rubenstein, 2019).
Such disturbances to the E-I ratio in neurodevelopment can
be caused by compensatory homeostatic plasticity in re-
sponse to genetic defects, such as in mouse models of

fragile X syndrome (Antoine et al., 2019). Recent work impli-
cates mitochondria as mediators of homeostatic plasticity,
with more pronounced changes in the mitochondrial pro-
teome in response to activity deprivation in mice modeling
fragile X syndrome (Bülow et al., 2021). Given these findings
and our results here reporting enriched expression of nu-
clear-encoded mitochondrial transcripts in PV interneurons,
it is tempting to speculate that disturbances in mitochondrial
composition contribute to altered E-I ratios common in
disease.
The heterogeneity we observed in ribosomal and respi-

ratory chain proteins, as measured in our proteomic data
or predicted from the single-cell transcript datasets, can
be interpreted in the following ways. First, differences in
expression do not necessarily mean that the stoichiome-
tries differ from what is expected of the respiratory chain
complexes embedded in the inner mitochondrial mem-
brane or the mitochondrial ribosome in the matrix of the
organelle. These expression differences may reflect ana-
tomic and cell type-specific regulation of free subunits in
the cytoplasm before they are targeted to their corre-
sponding mitochondrial compartments. This hypothesis
would suggest that the biogenesis or destruction of respi-
ratory complexes or the mitochondrial ribosome subunits
is different among anatomic regions or cell types. A sec-
ond model considers heterogeneity in the composition of
these complexes, a possibility bolstered by recent find-
ings of variable neuronal cytoplasmic ribosome composi-
tion (Fusco et al., 2021). The contributions of these
models to the stochiometric assembly of these mitochon-
drial complexes awaits further experimentation.
Our analysis of expression of SLC25A transporters

showed that, as predicted, this family of proteins has vari-
able expression across regions and cell types (Figs. 4, 5).
Interestingly, we found that several SLC25A transporters
were expressed at higher levels in small populations of
cells (Fig. 5). The increased expression of SLC25A family
members in distinct cell populations included multiple or-
phan transporters whose function is unclear, such as
SLC25A30, SLC25A34, and SLC25A39 (Palmieri, 2013;
Palmieri and Monné, 2016; Palmieri et al., 2020), and
transporters linked to neurodevelopmental disorders,
such as the citrate transporter SLC25A1 and those anno-
tated in the SFARI database of autism spectrum-linked
genes (Fig. 5B). Mutations in SLC25A1 cause a rare,
often fatal metabolic disorder characterized by neonatal
epileptic encephalopathy (Nota et al., 2013). Moreover,
SLC25A1 is part of the chromosomal interval deleted in
22q11.2 deletion syndrome, which is associated with in-
creased risk for myriad neurodevelopmental disorders,
most prominently schizophrenia (McDonald-McGinn et
al., 2015). Recent work suggests that SLC25A1 and
SLC25A4 are hub genes in the network of the perturbed
brain proteome associated with 22q11.2 deletion syn-
drome (Gokhale et al., 2019). The distinctive expression
patterns of SLC25A transporters that we observed may
be an intrinsic cell autonomous characteristic defining a
distinct cell population. Alternatively, such discrete cell
populations may represent a transient metabolic state
triggered by an acute stimulus. While we cannot resolve
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between these hypotheses until single-cell metabolo-
mics is possible, genetically encoded biosensors for me-
tabolites are an alternative tool that could be used to
discriminate between these hypotheses. Subcellularly
targeted and genetically encoded biosensors for lactate,
glucose, ATP, NADH, and pyruvate have been success-
fully used in neurons, while biosensors for the TCA cycle
metabolites citrate and a-ketoglutarate have also re-
cently become available (Lüddecke et al., 2017; Koveal
et al., 2020; Zhao et al., 2020). These tools can be used
to support further investigation into our results here.
Together, our results suggest that further investigation
into the roles of the SLC25A transporter family in the
brain will produce important insights into how mitochon-
dria influence brain function and neurodevelopment. Our
work provides a resource of several mitochondrial genes
enriched in certain cell types or regions that will serve as
a novel tool to inspire hypothesis generation and func-
tional studies of mitochondrial regional and cellular het-
erogeneity in the brain.
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